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Decay of correlations in fluids: The one-component plasma from Debye-Hu¨ckel
to the asymptotic-high-density limit
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The decay of structural correlations in the classical one-component plasma is analyzed by calculating the
poles of the Fourier transform of the total~pairwise! correlation functionh(r ) for two integral equation
theories, the soft mean spherical approximation and the hypernetted chain~HNC!. We show that for all except
the largest values of the plasma coupling constantG, the leading-order pole contribution provides an accurate
description ofh(r ) at intermediate range, as well as the ultimate asymptotic decay. The crossover from
monotonic decay at weak coupling to exponentially damped oscillatory decay at strong coupling is shown to
arise from the same mechanism as that which occurs for charge correlations in binary ionic fluids. We calculate
the values ofG at which the crossover occurs in the two theories. The role of higher-order poles and~within
the HNC! other singularities in determining the intermediate range behavior ofh(r ) for strong coupling is
discussed. We investigate the properties of the solutions of the integral equations in the strong coupling,G
→`, asymptotic high-density limit~AHDL !. Pade´ approximants are employed in order to test the validity of
the scaling laws proposed for the potential energy, direct correlation function, and for the poles and their
contributions toh(r ) in the AHDL. Our numerical results provide strong support for the validity of the
theoretical predictions concerning the AHDL.@S1063-651X~99!01002-8#

PACS number~s!: 61.20.Ne, 61.20.Gy, 64.10.1h, 52.25.2b
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I. INTRODUCTION

The one-component plasma~OCP! can be regarded as th
simplest model of an ionic fluid. It describes classical po
ions, of chargee, interacting via the Coulomb potentiale2/r
and immersed in a uniform neutralizing background
charge. In spite of its simplicity, the OCP plays a key role
the physics of dense stellar material@1# and as a referenc
fluid for determining the properties of certain liquid meta
the effects of electron screening being treated perturbati
@2#. The statistical mechanics of the OCP are well studi
Indeed near equal effort has been expended in determi
the properties of the OCP@1# as for those of the hard-sphe
fluid, which serves as the primary reference system
simple fluids where the interatomic potentials are sho
ranged@2#. An important feature of the OCP is that its equ
librium properties depend on a single dimensionless par
eter, the plasma coupling constant

G[b
e2

aWS
, ~1!

where b[(kBT)21, kB is Boltzmann’s constant,T is the
temperature, andaWS is the Wigner-Seitz or ion-sphere ra
dius, which in three dimensions~3D! is

aWS[~3/4pr!1/3 ~2!

with r being the number density of the ions. All the standa
integral equation theories of liquids and many of the m
recent descendants have been applied to the OCP and
regime of validity has been ascertained by comparison w
the extensive computer simulation studies which exist
this model@1#. The structure and thermodynamic propert
PRE 591063-651X/99/59~2!/1435~17!/$15.00
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are well-described by Debye-Hu¨ckel theory in the weak-
coupling regimeG!1. At high couplings the hypernetted
chain ~HNC! approximation has proved the most success
of the standard theories and is accurate for a wide rang
G:0.05 <G<50 @3#. For larger values ofG, the HNC yields
radial distribution functionsg(r ) with less pronounced
maxima than the corresponding Monte Carlo results@4,1#.
Better agreement is achieved by resorting to MHNC~modi-
fied HNC! approximations but these retain the main featu
of the original HNC@5#. In a remarkable early paper, Ng@4#
showed that the HNC could be solved numerically, givi
stable solutions, forG up to 7000 or thereabouts. This
particularly striking when one notes that the Monte Ca
simulations predict a freezing transition in the OCP forG
;178@6,7#. In other words, solutions of the HNC exist forG
well into the metastable fluid region. Ng@4# also showed that
the decay ofg(r )21[h(r ), in the range 10<r /aWS<20,
could be fitted by a single~exponentially damped! sinusoidal
function @see Eq.~41!# for 200<G<7000. Such a result im-
plies that at longer and intermediate range, pairwise corr
tions are governed by a dominant conjugate pair of comp
poles inĥ(q), the Fourier transform ofh(r ). This observa-
tion provided some of the motivation for the present stu
which analyzes the decay of pairwise correlations for the
range ofG, i.e., from the weak-coupling, Debye-Hu¨ckel re-
gime whereh(r ) exhibits monotonic~exponential! decay to
the very strong-coupling,G→`, limit.

In order to investigate correlations in the OCP, we emp
and, where necessary, improve upon methods develope
our earlier studies of the asymptotics of correlation functio
@8–11#. We focus on two integral equation approach
namely~i! the HNC, which, like its more sophisticated rel
tives, can only be solved numerically so that the determi
1435 ©1999 The American Physical Society
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tion of the poles ofĥ(q) is rather demanding, and~ii ! the
SMSA ~soft mean spherical approximation! @12#, which has
the advantage of providing an analytical solution for t
OCP while still yielding reasonable results for structure a
for thermodynamic properties;g(r ) can take on negative val
ues in the SMSA but only for large couplings, i.e.,G*400.
Although these two theories appear to have very differ
origins, at strong coupling they share several common
tures @13–15#. This was ascertained by studying their the
modynamic properties, as related to the closure relati
which define the two approximations. In particular, the var
tional free-energy functionals of the pair functions are ve
similar. Such considerations lead to investigations of
AHDL ~asymptotic high-density limit!, defined as the strong
coupling limit G→`, in which the compressibility vanishes
It was established@13–15# that the HNC and SMSA for soft
core potentials, together with the variational perturbat
theory @based on the PY~Percus-Yevick! treatment of the
hard-sphere reference fluid#, become identical in the AHDL
In this limit the theories have the same Madelung ener
which is an exact lower bound to the true potential ener
and the pair direct correlation functions can be given
simple meaning, i.e., as overlap volumes for hard-core flu
and asinteractionsbetweensmeared particlesfor soft poten-
tials. More significantly for the present work, it is conje
tured that for a certain wide class of potentials, the poles
ĥ(q) should exhibit some universal features in the appro
to the AHDL. These features are summarized in Sec. II C
the main result is that in the AHDL the poles in the OC
should be identical to those arising from the PY treatmen
hard spheres in the limit where the packing fractionh51,
which once again corresponds to the vanishing of the c
pressibility. In an earlier paper@14# by one of us, the AHDL
of the OCP was investigated using the SMSA and Ng’s@4#
numerical solutions for the HNC. Here we readdress t
limit by performing new calculations and using the metho
of pole analysis developed in@8–11#. In addition, we carry
out Pade´ analysis on data from both the HNC and SMS
calculations to examine the possible scaling behavior of v
ous quantities in the approach to the AHDL. This enables
to test further the earlier conjectures and to ascertain w
~large! values ofG are required before the properties of t
OCP are those characteristic of the AHDL, i.e., when sca
behavior, with the small parameter«512h(G), is appro-
priate. Although one can associate anideal liquid with the
limit h51 and imagine performing some perturbative e
pansion in« to describe the properties of dense liquids, it
not obvious that such a procedure should work. Recall
h51 lies well beyond the close-packing limith50.74 for
hard spheres.

The universality associated with the AHDL does not e
tend to intermediate values ofG. Unlike the hard-sphere
fluid, where only conjugate pairs of complex poles arise a
h(r ) is always oscillatory, the OCP develops a pair of pu
imaginary poles at some particular value ofG, here desig-
nated byGK , and forG,GK the ultimate decay ofh(r ) is
monotonic~exponential!. Several attempts have been ma
to determineGK , using theory and simulation@1#, and this
quantity was expected to lie between about 1 and 3. H
ever, the precise mechanism leading to the onset of osc
d
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tions inh(r ) has remained somewhat obscure. Here we sh
that the mechanism is the same as that which determines
onset of charge oscillations in a binary ionic fluid~electro-
lyte! @10#, described first by Kirkwood@16#. We provide ac-
curate estimates ofGK within the HNC and the SMSA.

Our paper is organized as follows. In Sec. II we summ
rize the relevant integral equation theories and describe
theory for the asymptotic decay of pair correlations in t
OCP. Prescriptions are given for determining the poles
ĥ(q) and their contributions toh(r ) in both the HNC and
SMSA. The possible role of singularities other than simp
poles is discussed. Section II C contains a brief accoun
the properties of the OCP in the AHDL. In Sec. III we d
scribe the results of our calculations, comparing our res
for the leading-order pole with those obtained by Ng@4# in
his fitting procedure. We show that the leading-order p
contribution in both the HNC and SMSA provides an acc
rate account ofh(r ) for separationsr down to second neares
neighbors~not just asymptotically!, providedG&1500, at-
testing to the usefulness of the pole expansion. While
procedures we have developed for calculating the poles w
well at leading order, there are severe difficulties in det
mining higher-order poles. Section III B discusses how s
rious poles may be generated from numerical solutions of
HNC and other integral equation theories, pointing out t
some earlier publications have probably reported such sp
ous poles, believing these to be genuine. In Sec. III C
consider second-~next-to-leading-! order contributions to
h(r ). We show that in the case of the SMSA the contributi
from the next-to-leading-order conjugate pair of poles lea
to a splitting of the second maximum inh(r ) for very large
values ofG. Similar splittings are found in the HNC but w
argue that these are likely to be associated~primarily! with
other singularities, i.e., logarithmic branch points whi
should arise in this approximation. Section III D describ
the trajectories of the OCP poles in the complex plane a
function ofG, comparing the results with those for the har
sphere fluid as a function ofh. Finally, in Sec. III E we focus
on the results of our Pade´ analysis of structural propertie
and the potential energy in the AHDL. We make some co
cluding remarks in Sec. IV.

II. THEORY

A. Summary of integral equation theory of liquids

The standard approach to the static properties of liqu
@2# is based upon the Ornstein-Zernike~OZ! integral equa-
tion, which for a homogeneous one-component fluid read

h~r !5c~r !1rE dr 8h~ ur2r 8u!c~ ur u8!, ~3!

wherer is the position vector. This equation defines thedi-
rect correlation function, c(r ), in terms of the total correla-
tion function, h(r ), which is in turn related to the radia
distribution function,g(r ), by h(r )5g(r )21. In Fourier
space the OZ equation takes the simple form

ĥ~q!5
ĉ~q!

12r ĉ~q!
. ~4!
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Here f̂ (q) denotes the 3D Fourier transform of a spherica
symmetric functionf (r ), i.e.,

f̂ ~q!54pE
0

`

dr r 2f ~r !
sin~qr !

qr
,

~5!

f ~r !5
1

2p2E0

`

dq q2 f̂ ~q!
sin~qr !

qr
.

It can be shown using diagrammatic analysis@2# that for a
system characterized by a pairwise interaction potentialf(r )
the exact closure to the OZ equation is

h~r !115e2bf~r !1h~r !2c~r !2b~r !, ~6!

where2b(r ) is thebridge function, the sum of allbridgeor
elementarydiagrams.

The HNC closure to the OZ relation simply sets t
bridge function in Eq.~6! to zero at all distances, i.e
bHNC(r )[0. This closure can be conveniently written as

c~r !1bf~r !5g~r !212 ln g~r !>0. ~7!

For a specified potentialf(r ) the HNC can be solved nu
merically using an iterative procedure@2#.

The HNC plays a pivotal role in developing other closu
approximations to the OZ relation. If the bridge functio
2b(r ) were known, one could determine theexactstatistical
mechanics by solving the HNC for theeffectivepotential
feff(r )5f(r )1b21b(r ). Although b(r ) is not knownex-
actly, it has been argued@5# that this function carriesuniver-
sal features which are determined by the bridge function
hard spheres. In the MHNC approach the HNC equatio
solved for an effective potentialfeff(r ) which employs the
hard-sphere bridge function calculated with a suitably cho
hard-sphere diameter.

The MSA ~mean spherical approximation! is a closure to
the OZ relation designed for systems with a hard-core re
sion, i.e.,f(r )5` for r ,d, whered is the hard-core diam
eter. This closure reads

g~r !50, r ,d and c~r !1bf~r !50, r .d,
~8!

where the first equation is an exact result and the sec
constitutes the approximation. The MSA also implies a s
cific choice of bridge function, namelybMSA(r )5g(r )21
2 ln g(r) for r .d. The functionsg(r ) andc(r ) in the MSA
are discontinuous atr 5d. In the case of soft-core potentia
such as the OCP, one can choose a particular hard-cor
ameter,R, so that the MSA gives

g~r 5R1!50, ~9!

i.e., g(r ) can be forced to be continuous~although its first
derivative will still be discontinuous atr 5R) through care-
ful choice of the hard-core diameter. The condition~9! can
be used together with Eq.~8!, with d5R, to define the
SMSA closure, an extension of the MSA to soft-core pote
tials. Clearly R is an effective hard-core diameter and t
resultingg(r ) can be regarded as an acceptable solution
the MSA for the soft potential.
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B. Asymptotic decay of correlations

The theory for the OCP outlined below follows close
the analysis made for the asymptotic decay of correlati
presented in@8# for simple fluids and in@10# for ionic fluids.

Outside the critical region, the ultimate decay of the dire
correlation function of a simple fluid at large distancesr is
given by c(r )→2bf(r ), which in the case of the OCP
translates intoc(r )→2be2/r . It is therefore convenient to
define a short-ranged direct correlation function,csr(r ), by
subtracting the long-ranged Coulomb decay

csr~r ![c~r !1
be2

r
. ~10!

The Fourier transform ofc(r ) is then

r ĉ~q!5r ĉsr~q!2
kD

2

q2
, ~11!

wherekD
2 [4prGaWS. kD is the inverse Debye screenin

length. We assume thatcsr(r ) is exponentially decaying so
that its Fourier transformĉsr(q) has only even powers in th
Taylor expansion aboutq50,

ĉsr~q!5c~0!1c~2!q21c~4!q41c~6!q61•••. ~12!

Consequently,ĉ(q) and ĥ(q) are even and we can write

h~r !5
1

2p2r
E

0

`

dq q sin~qr !ĥ~q!

5
1

4p2ri
E

2`

`

dq qeiqr
ĉ~q!

12r ĉ~q!
. ~13!

Any poles at complexq5a11 ia0 are then given by the
zeros of the denominator,

12r ĉ~q!512r ĉsr~q!1
kD

2

q2
50. ~14!

The integral in Eq.~13! can be carried out by contour inte
gration. If no singularities other than simple poles exist, th
choosing an infinite radius semicircle in the upper half-pla
we obtain

h~r !5(
n

An

eiqnr

r
with An[2

qn

2pr2
„dĉ~q!/dq…qn

,

~15!

where the operatord/dq represents the derivative with re
spect to the variableq andqn is thenth pole.

From Eq.~15! it is straightforward to see that the ultima
decay ofh(r ) should be driven by the pole or poles closest
the real axis~smallesta0). If this pole is pure imaginary, i.e.
if qn5 ia0 , then the leading decay is determined by

h~r !;A
e2a0r

r
. ~16!
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In turn, if the pole closest to the real axis is the comp
numberqn5a11 i ã0 , then it follows that2a11 i ã0 is also
a solution of Eq.~14! and the ultimate decay ofh(r ), deter-
mined by the conjugate pair of complex poles6a11 i ã0 , is

h~r !;uÃu
e2ã0r

r
~ei ~a1r 2u!1e2 i ~a1r 2u!!

;2uÃu
e2ã0r

r
cos~a1r 2u!, ~17!

where we have used the fact that the amplitudes of the1 and
2 poles, A6[uA6ue7 iu6

, have the same modulus,uA1u
5uA2u[uÃu, and their phases satisfyu152u2[u.

Within the MSA we expect the only singularities to be
infinite number of simple poles. However, in other appro
mations such as the HNC other singularities are ind
present. The HNC closure determines the decay of the d
correlation function to be

c~r !;2bf~r !1
1

2
h2~r !1••• ~18!

which follows by expanding the right-hand side of Eq.~7!.
Therefore one expectscsr(r );l(r ) with l(r )[ 1

2 h2(r ). If
the pole closest to the real axis is a pure imaginary poleia0 ,
then the asymptotic decay of the total correlation function
given by Eq.~16!. Hencel(r );A2e22a0/2r 2. This behavior
is associated with logarithmic branch point singularities
l̂(q) at q562ia0 , namely

l̂~q!; i
1

2

2pA2

q
ln

12 iq/2a0

11 iq/2a0
. ~19!

The right-hand side of Eq.~19! is simply the Fourier trans
form of A2e22a0/2r 2. It immediately follows thatĉ(q) must
have these branch points too. Moreover, from the occurre
of ĉ(q) in the denominator of the OZ relation
x

-
d
ct

s

f

ce

11rĥ~q!5
1

12r ĉ~q!
, ~20!

one expectsĥ(q) to have branch points atq562ia0 also.
This singularity leads to another term in the asymptotic
pansion ofh(r ),

h~r !;A
e2a0r

r
1A2F~r !

e22a0r

r 2
, ~21!

where F(r ) is a function that vanishes like 1/ln2 r as r
→`. This function can be obtained explicitly by contou
integration around the branch cut in the upper complex h
plane. SinceF(r ) vanishes like 1/ln2(r), the second term on
the right-hand side of Eq.~21! should be much smaller tha
the first except at short and, perhaps, intermediate range

The argument can be generalized to all the~complex!
polesqn of ĥ(q) and the expansion ofh(r ) then becomes

h~r !5(
n

An

eiqnr

r
1(

n
An

2Fn~r !
ei2qnr

r 2
. ~22!

Further details of the derivation ofFn(r ) can be found in
@17# where a similar discussion was given for the HNC tre
ment of binary ionic fluids.

1. Poles in the SMSA

In Appendix A we give the analytical solution to th
SMSA for the OCP as obtained from the MSA treatment
the system of charged hard spheres immersed in an o
sitely charged continuum background. The explicit expr
sion for ĉ(q) can be obtained from the analytical solution f
c(r ) and this was given by Rosenfeld@14#. The correct ex-
pression forĉ(q) for the charged hard-sphere system in t
MSA reads
r ĉ~q8!

24h
5

A

~q8!3
@sin q82q8 cosq8#

1
k2

6~q8!5
$@3~q8!226#sin q82@~q8!226#q8 cosq8%1

6hM2

~q8!4
$2q8 sin q82@~q8!222#cosq822%

1
h

2~q8!6
~A1k2V!$@4~q8!2224#q8 sin q82@~q8!4212~q8!2124#cosq8124%

1
hk2

60~q8!2
$@6~q8!42120~q8!21720#q8 sin q82@~q8!6230~q8!41360~q8!22720#cosq82720%

2
G

~q8!2
cosq8, ~23!
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where q8[qR. Equation ~23! corrects Eq.~C8! in @14#
which contains two misprints. For the OCP in the SMSA, t
expression~23! holds with M[0 and the effective hard
sphere diameterR is determined by solving Eq.~A9! for the
packing fractionh(G). k2512Gh2/3 and the quantitiesA
andV are functions ofh defined in Appendix A. In order to
find the poles ofĥ(q), we must solve the transcendent
equation 12r ĉ(q)50 for q5a11 ia0 . This can be
achieved by deriving equations for the real and imagin
parts of 12r ĉ(q) and then solving the resulting two equ
tions for a0 anda1 using a Newton-Raphson procedure.

The amplitudesAn entering the pole expansion~15! re-
quire only the derivativedĉ(q)/dq. For a pure imaginary
pole, the derivative is readily evaluated analytically usi
Eq. ~23!. For complex poles, the numerical evaluation of t
amplitudes and phases can be carried out using comple
gebra, avoiding the need to separate imaginary and real p
in the analytical expression for the derivativedĉ(q)/dq.

2. Poles in the HNC

The HNC for the OCP must be solved numerically usi
an iterative procedure. We have used an efficient code w
is based upon Gillan’s method@18#. The Coulomb potentia
is separated fromc(r ) in the standard way and is added ba
at the end of the calculation.

Below, we give a prescription for calculating the poles
the OCP based on the approach developed in@8# for simple
fluids with short-ranged potentials. As we shall see, t
method is useful for calculating the leading-order pole~s! but
has limited use for determining the higher-order poles of
OCP in the HNC approximation since the integrals which
involved for the latter do not always converge. With the
ception of Ref.@17# this limitation has not been realized full
in previous works@8,11,19–22# where equivalent prescrip
tions for calculating the poles for short-ranged potentials
for ionic fluids were given. We shall return to this point late

The polesq5a11 ia0 are the complex solutions of Eq
~14!, which can be rewritten in the more convenient form

11
kD

2

q2
54prE

0

`

dr r 2csr~r !
sin~qr !

qr
. ~24!

By separating imaginary and real parts, we obtain the follo
ing two equations:

a0S 12
kD

2

a0
21a1

2D 54prE
0

`

dr rcsr~r !sinh~a0r !cos~a1r !,

~25!

a1S 11
kD

2

a0
21a1

2D 54prE
0

`

dr rcsr~r !cosh~a0r !sin~a1r !

~26!

which are equivalent to Eqs.~4a! and~4b! in @8# for the poles
in simple fluids with short-ranged potentials. This pair
equations can be solved numerically fora0 anda1 using a
Newton-Raphson procedure withcsr(r ) as input. However,
note that the integrals in these equations might not alw
converge. Assume, for example, that the leading pole is p
l

y

al-
rts

ch
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e
e
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-
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imaginary, given byq5 ia0 . Then, from the analysis carrie
out in Sec. II B@see Eq.~16!#, the ultimate decay ofh(r ) is
;Ae2a0r /r . Within the HNC closure the decay of the dire
correlation function is given by Eq.~18! so that the short-
ranged direct correlation function decays as

csr~r !;
1

2
A2

e22a0r

r 2
. ~27!

It follows that the integrals in Eqs.~25! and ~26! should
diverge for any pole whose imaginary part is larger th
2a0 . We arrive at the same conclusion if the decay ofh(r )
is controlled by a conjugate pair of complex poles. In ge
eral, the integrals in Eqs.~25! and ~26! converge only for
complexq such that Im@q#&2a0 , wherea0 is the imaginary
part of the leading pole~s!. In practice~see Sec. III! all the
other poles lie outside the convergence range and Eqs.~25!
and ~26! allow us to determine the leading-order pole~s!
only.

Pure imaginary polesq5 ia0 are determined by Eq.~25!
alone, witha1[0. This equation then simplifies to

12S kD

a0
D 2

54prE
0

`

dr rcsr~r !
sinh~a0r !

a0
. ~28!

For fluids with short-ranged potentials the imaginary po
satisfy the same equation but withkD[0 and csr(r ) re-
placed byc(r ). It was shown in@8# that for such fluids there
is at most one imaginary pole. This is no longer the case
the OCP. The presence of the Coulomb term2(kD /q)2 in
ĉ(q) modifies the analysis. In fact, as we discuss later in S
III A, we find that Eq. ~28! has two solutions in the wea
coupling regime~smallG) and none at strong coupling~large
G).

In Appendix B we give a prescription for evaluating th
amplitude and phase of contributions toh(r ) arising from
simple poles.

C. Asymptotic high-density properties of the HNC
integral equation

Here we summarize some general properties of the H
and other integral equations in the asymptotic high-den
limit ~AHDL !, i.e., the limit in which the compressibility
vanishes. As mentioned earlier, exact liquid state theory
pair correlations functions can be reduced to an HNC eq
tion for some~effective! potential. Thus the properties of th
solution of this equation for different potentials are of cent
importance. For pairwise potentialsf(r ) with strong repul-
sion at short distances, the AHDL solution of the HNC equ
tion hasuniversalfeatures@15,14#, some of which are listed
below. We use the Wigner-Seitz radiusaWS as the unit of
length, i.e.,r 8[r /aWS, and provide specific examples fo
the OCP in 3D. Further details are given in the original p
pers@15,14#.

~i! The Madelung energy is an exact lower bound for t
potential energyU. This Madelung energy is the sum of th
self-energies of individual dressed particles~Onsageratoms!
and for the OCP in 3D,
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b
U

N
5buOA52

9

10
G, ~29!

whereuOA is the self-energy of an Onsageratomconsisting
of a point charge at the center of a neutralizing unit sph
having the background charge density. It is equal to the
ergy integral with a universal pair correlation function,

b
U

N
[

1

2
rE bf~r !@g~r !21#dDr

5
1

2
VD

21E bf~r 8!@gD~r 8!21#dDr 8, ~30!

wherebf(r 8)[G/r 8 for the OCP andVD is the volume of
a unit D-dimensional sphere. The universal functionsgD(r )
denote the limith→1 of the solution of the PY equation fo
D-dimensional hard spheres of packing fractionh.

~ii ! In the AHDL the direct correlation function of th
OCP in 3D is given by

2
c~r 8!

G
5C~r 8!

5
6

5
2

1

2
~r 8!21

3

16
~r 8!32

1

160
~r 8!5, r 8<2

5
1

r 8
, r 8.2, ~31!

where C(r 8) is the electrostatic interaction between tw
spheres with the Wigner-Seitz radius where the charg
smeared uniformly inside the sphere. It follows that in t
AHDL,

2
c~r 50!

G
5

6

5
. ~32!

~iii ! In the AHDL the properties of the HNC equatio
mimic those of the MSA. The HNC builds an ion sphe
automatically in this limit. In particular, the pair exclusio
condition g(r 8)50, r 8<2 and the MSA conditionc(r 8)
1bF(r 8)50, r 8>2 are satisfied. The AHDL correspond
to an effective packing fractionh51, i.e., the solutions cor
respond to a hard-core diameterR`52aWS.

~iv! For the general class of Green’s-function potentia
including the OCP and the screened Coulomb~Yukawa!
fluid, the zeros of the Fourier transform of the direct cor
lation function,ĉ(q), are universal in the AHDL. LetV(r )
denote the overlap volume of twoD-dimensional unit
spheres whose centers are separated by a distancer so that
V(0)5VD . Definingv(r )5V(r )/V(0), then in 3D

v~r 8!512
3

4
r 81

1

16
~r 8!3, r 8<2

50, r 8.2. ~33!

The zeros ofĉ(q) are identical to those ofv̂(q) and the
latter are given as the solutionsqi8 of
e
n-

is

,

-

q85tan q8 ~34!

with q85qaWS. For the OCP in the AHDL, ĉ(q)}
2Gv̂(q)/q2 with similar relations for other potentials an
the poles ofĥ(q) @determined by the zeros of 12r ĉ(q)] are
given by the zeros ofĉ(q) in the limit G→`. Thus, in the
AHDL the poles ofĥ(q) should take universal values give
by the solutions of Eq.~34!, i.e., the poles are real with th
leading one given by

q18[a1
`aWS54.493 409 458 . . . . ~35!

Note that for hard spheres in the PY approximation one
show explicitly @14# that in the AHDL (h51) the poles of
ĥ(q) are given by solutions of Eq.~34! with q85qaWS
5qd/(2h1/3), whered is the hard-sphere diameter.

~v! The approach to the AHDL is quantified by the sm
parameter

«[12h. ~36!

In the SMSA treatment of the OCP,h(G) is determined by
solving Eq.~A9!, while in the HNC a prescription is require
for the effective diameter R which determines h
5(R/2aWS)

3. We return to this later.
Scaling relations~expansions in powers of«) have been

proposed for the behavior of the poles and their amplitu
@14#. For soft potentials, e.g., the OCP, the imaginary (ã0)
and real (a1) parts of the leading pole are expected to ob
the relations

ã0aWS5Aã0
«61••• ~37!

and

a1aWS5a1
`aWS2Aa1

«31••• ~38!

in 3D. Note that the powers depend on the dimensiona
only, but the amplitudesAã0

andAa1
are not universal and

need not be the same for different theories.~The higher poles
have equivalent expansions@14#.! The amplitudeuÃu of the
leading pole contribution toh(r ) @see Eq.~17!# also has a
series expansion,

2
uÃu
aWS

52
uÃ`u
aWS

1AÃ«31•••, ~39!

where

2
uÃ`u
aWS

[
2

3S 11~a1
`aWS!2

a1
`aWS

D 53.143 971 74 . . . ~40!

is universal butAÃ is not.
The analytical solution of the SMSA for the OCP is co

sistent with Eqs.~37!–~40!. However, the general analys
@14# which leads to these results, along with that for t
internal energy~29! and forc(r 50) ~32!, is not completely
rigorous in the mathematical sense and it is of considera
interest to test these conjectures for the HNC and other th
ries. Indeed this is one of the aims of our present study.
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TABLE I. Leading conjugate pair of complex poles6a11 i ã0 and the respective amplitudesuÃu and
phasesw[2u1p/2 for the OCP treated in the HNC for different values ofG; ~a! as obtained from the pole
analysis prescribed in Sec. II B 2;~b! Ng’s results for the parameters as listed in Table III of@4#, obtained
from fitting the asymptote~41! to his numerical data forh(r ) in the range 10<r /aWS<20.

ã0aWS
a1aWS 2uÃu/aWS

w[2u1p/2

G ~a! ~b! ~a! ~b! ~a! ~b! ~a! ~b!

200 0.4255 0.4251 4.1637 4.1638 2.8902 2.8714 0.4656 0.46
250 0.3741 0.3736 4.1849 4.1851 2.8503 2.8226 0.4231 0.41
300 0.3358 0.3352 4.2012 4.2013 2.8210 2.7878 0.3889 0.38
350 0.3060 0.3053 4.2141 4.2143 2.8014 2.7627 0.3628 0.35
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III. RESULTS OF CALCULATIONS

In this section we describe the results of our numeri
calculations for structural properties of the OCP obtain
using both the HNC and SMSA.

A. Asymptotic decay ofh„r …

We consider first the ultimate decay ofh(r ) in the OCP.
Ng @4# analyzed this problem in the framework of the HN
Following a similar path to what we presented in Sec. II
he argued~in our notation! that for sufficiently largeG,

h~r !;2uÃu
e2ã0r

r
sin~a1r 1w!. ~41!

Comparison with Eq.~17! showsw[2u1p/2. However,
Ng does not provide a means for calculating the poles
ĥ(q), nor does he give the amplitude and the phase. In
weak coupling regime,G!1, by expandingĉ(q) about q
50, he arrives at

rĥ~q!'2
3G

3G1q2aWS
2

, ~42!

which exhibits a simple pole atqaWS5 i (3G)1/25 ikDaWS.
Thus

rh~r !'2GaWS

e2kDr

r
, r→`, ~43!

which is the Debye-Hu¨ckel asymptotic form valid only in the
limit of very weak coupling@23,3#.

For G@1, Ng argues that the leading pole should be co
plex. For the range 200<G<7000, he fits the parameter
ã0 , a1 , uÃu, andw in the asymptote~41! to the decay of
the solutionh(r ), obtained by solving numerically the HNC
calculated in the range 10<r /aWS<20.

Here we use the prescription described in Sec. II B 2 a
Appendix B to compute the leading poles ofĥ(q), their am-
plitudes, and phases for the OCP treated in the HNC
Table I we compare our results with those of Ng, who fitt
his numerical data to Eq.~41!, and we find an excellen
agreement. This means that the asymptote~41! provides a
very accurate account of the decay ofh(r ) over the range of
distances used by Ng in his fitting analysis. As we shall
l
d

,

f
e

-

d

n

e

below, for this range ofG, i.e., 200<G<350, the asymptote
is also very accurate at much smaller distances.

The poles of the SMSA can be computed, in turn, us
the prescription given in Sec. II B 1. At lowG, in both the
SMSA and the HNC, we find that the ultimate decay ofh(r )
is given by a simple pole lying on the imaginary axis,q
5 ia0 , as was expected. This leading pole is accompan
however, by another imaginary pole,ia08 , with a08.a0 . As
G is increased, these two poles move towards each other
coalesce when a certain value ofG is reached. For consis
tency with previous work@10,24# we designate this particula
value of G the Kirkwood coupling,GK . As G is increased
aboveGK , the two poles move off the imaginary axis an
symmetrically into the complex plane, giving rise to oscill
tory decay ofh(r ). This type of mechanism for the onset o
oscillations inh(r ) for the OCP was alluded to by Choqua
and Sari@25# and earlier by Del-Rio and DeWitt@26#, but a
full description was not given. AsG→GK

2 , the amplitudes of
the two imaginary poles diverge. The amplitude of the p
closer to the real axis,A, is negative while the other,A8, is
positive. Both amplitudes tend to equal absolute values
a0→a08 so that the combination

h~r !;A
e2a0r

r
1A8

e2a08r

r
~44!

remains finite atGK . For G@GK , h(r ) decays as

h~r !;2uÃu
e2ã0r

r
cos~a1r 2u!. ~45!

As G→GK
1 , uÃu diverges but the phaseu→2p/2 anda1

→01 ~the complex poles coincide! so that cos(a1r2u)→0
and againh(r ) remains finite.

This scenario for the onset of oscillations in the OCP
identical to that found for the charge correlations in the
stricted primitive model~RPM! @10,19#. It was first de-
scribed by Kirkwood@16# in his discussion of the potentia
of mean force in strong electrolytes. It is also found in t
Yukawa screened-RPM~YRPM! @24#, a model similar to the
RPM where screening is explicitly included by replacing t
long-ranged Coulomb interactions by Yukawa potentials.

We have calculatedGK in the SMSA and in the HNC. In
the SMSA the two imaginary poles coalesce atqaWS
5 i4.548 when GK52.1199, and in the HNC atqaWS
5 i2.85 whenGK51.120. Choquard and Sari@25# obtained
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TABLE II. ~a! The pair of imaginary polesia0 and ia08 and their respective amplitudesA and A8, as
obtained from the SMSA and HNC, are given forG51. ~b! The leading conjugate pair of complex pole

6a11 i ã0 and their respective amplitudesuÃu and phasesu, as obtained from the SMSA and HNC, a
given for three values ofG. The poles of the HNC cannot be computed accurately atG57000 using
our prescription~see text!. ~c! The next-to-leading-order poles for the SMSA are given at two differ
values ofG.

~a!

a0aWS A/aWS a08aWS A8/aWS

G SMSA HNC SMSA HNC SMSA HNC SMSA HNC

1 1.8531 2.2457 21.3185 23.9219 13.492 3.3203 32.438 5.4343

~b!

ã0aWS
a1aWS 2uÃu/aWS

u

G SMSA HNC SMSA HNC SMSA HNC SMSA HNC

10 1.9214 1.8099 3.6965 3.4677 5.3876 4.4748 0.2310 0.17
100 0.6112 0.6201 4.0927 4.0864 3.0411 3.0625 0.9585 0.95

7000 0.0340 4.4043 2.9050 1.5204

~c!

G ā0aWS ā1aWS 2uĀu/aWS ū

100 2.2624 8.0631 8.4274 1.0053
7000 0.3948 7.4618 5.0732 1.3397
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GK51.0 in the HNC from an analysis of Eq.~14!. In numeri-
cal work, based on a modification of the HNC, Cooper@27#
found that oscillations develop forG between 2 and 3, and
the same estimate was obtained by Hansen@7# from his
Monte Carlo study. In an earlier study, Del-Rio and DeW
@26# obtainedGK51.812 and this is close to the value
1.818 found by Deutschet al. @28# from a graphical analysis
GK was also estimated to be approximately 1.0 in Appen
B of @5#.

In Table II we compare the leading poles for the OCP
obtained from the SMSA and HNC for three values ofG.
The results from these two approaches are somewhat di
ent in the weak coupling regime,G&1, where the details o
the approximation become important. At highG the leading
poles from the two theories become much closer. In Fig. 1~a!
we compare the fullh(r ) obtained from the SMSA and HNC
at G51 with the asymptotic contribution given by Eq.~44!,
i.e., that determined by the two imaginary poles in Table
In the SMSA the agreement is remarkably good at all d
tances outside the imposed hard core. In the HNC the ag
ment is equally good down to aboutr /aWS'1. In Figs. 1~b!
and 1~c! we plot the full h(r ) against the asymptote~45!
obtained from the leading conjugate pair of complex poles
given in Table II. In Fig. 1~b!, G510 while in Fig. 1~c!, G
5100. The asymptotes obtained from the leading poles
the SMSA and HNC are almost identical forG5100, which
is not surprising since the poles and the amplitudes obta
from the two theories are very close. In both the SMSA a
the HNC, h(r ) is described accurately by the contributio
from the leading conjugate pair of poles for distances do
to about the second maximum. For a wide range ofG, other
~higher! poles and singularities do not play a role at interm
diate and long range. Even the shorter range behavior is
t
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scribed in a sensible, qualitative fashion. As we shall disc
in Sec. III C, this scenario changes forG*1500, where other
contributions become important.

B. Spurious poles

In Sec. II B 2 we gave a prescription for calculating th
poles of ĥ(q) for the OCP treated in the HNC that shou
yield at least the leading-order pole~s!. If the imaginary part
of the leading pole~s! is a0 and the short-ranged direct co
relation function decays likecsr(r ); 1

2 h2(r ), Eqs.~25! and
~26! will diverge for any higher pole whose imaginary pa
*2a0 . However, in the numerical evaluation of the integra
in this pair of equations, one is forced to truncatecsr(r ) at
some finite distance where the value of this function issuit-
ably small. This may seem harmless at first sight but in f
it has important repercussions for the numerical solutions
Eqs. ~25! and ~26!. Although the integrals should no longe
converge, the truncation means that the numerical algori
still converges. The issue is then how to separate the ac
poles from any spurious solutions arising from truncation.
Fig. 2 we show the numerical solutions, at three differe
values ofG, which we obtain from solving Eqs.~25! and
~26! for a0 and a1 taking csr(r ) to be truncated beyond
distancer, chosen so thatcsr(r ),1.531029. The leading
poles are given in Table II but for eachG we have found also
a line of solutions with imaginary values at about 2a0 , with
a0 the imaginary part of the leading pole~s!. These values
are in the region where convergence problems should ar

In order to investigate whether the solutions constitut
this line are actual poles or spurious solutions to Eqs.~25!
and ~26!, we performed a simple test. We considered
hard-core Yukawa fluid
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fYuk~x!5`, x<1

52
De2 z̃x

x
, x.1, ~46!

wherex[r /d andd is the hard-sphere diameter.D andz̃ are
both positive constants. Brownet al. @29# have investigated
the pole structure ofĥ(q) for this model fluid treated in the
MSA, which can be solved analytically~see@30# and also
@31#!. For consistency with their study, we takeD

5 9
8 eez̃/( 1

3 1 z̃211 z̃22), wheree is an energy parameter.

FIG. 1. Total correlation functionh(r ) for the OCP treated in
the SMSA ~solid line! and HNC ~dotted line!, at three different
values ofG. In ~a! G51, in ~b! G510, and in~c! G5100. The
dot-dashed line and the dashed line are the asymptotes in the S
and HNC, respectively. In~a! the decay is monotonic and the a
ymptote is given in Eq.~44!. In ~b! and ~c! the ultimate decay is
oscillatory and the asymptote is given in Eq.~45!. The parameters
of the asymptotes are given in Table II.
Sincec(r ) and its Fourier transformĉ(q) are known ana-
lytically, the poles can be calculated in a similar way to th
described earlier for the SMSA, i.e., by separating the eq

tion 12r ĉ(q)50 into its imaginary and real parts and sol
ing the two resulting equations fora0 and a1 . This proce-
dure enables us to find all the poles. Alternatively, we c
attempt to use the method described by Evanset al. @8#. This
is equivalent to that prescribed here for the HNC and~4a!
and ~4b! in @8# suffer from the same convergence problem
as our Eqs.~25! and ~26! in Sec. II B 2. In the MSA for the

hard-core Yukawa fluid we havec(r )}exp(2z̃r)/r outside
the hard core; the integrals in~4a! and ~4b! in @8# diverge

when the imaginary part of the pole is greater thanz̃. Con-
sequently, one can easily examine the range of converge

of the integrals simply by changingz̃ in the model. In Figs.

3~a! and 3~b! we show the poles ofĥ(q) for the hard-core
Yukawa fluid treated in the MSA, at a reduced temperat
T* [kBT/e51.18 and reduced densityr* [rd350.814, as
obtained from the analytical path and from solving Eqs.~4a!

and ~4b! in @8#. For z̃51 @Fig. 3~a!# a line of spurious solu-

tions is found ata0d' z̃ when this latter method is em
ployed. The leading conjugate pair of poles as obtained fr
both the analytical path and from~4a! and~4b! in @8# lies at
qd566.631 i0.82, i.e.,a0d,1. In this case the next-to
leading-order pole nearqd5612.41 i2.1 ~obtained from the
analytical path! could not be found using the second metho

For z̃52.5 @Fig. 3~b!#, and identical temperature and densi
the leading pole shifts toqd566.691 i0.78. Now, both the
analytical path and the numerical solution of~4a! and~4b! of
@8# yield not only this solution but also the next-to-leadin
order conjugate pair of complex poles atqd5612.53

1 i2.00. Note that the imaginary part is still belowz̃52.5.

SA

FIG. 2. Solutions of Eqs.~25! and~26! for the poles of the OCP
treated in the HNC, at three different values ofG. Only the right-

hand complex pole1a11 i ã0 is shown. L corresponds toG
51, s to G510, and3 to G5100. Note that forG51 there are
two poles lying on the imaginary axis. ForG510 the leading pole,

with ã0'1.8, is well separated from the other solutions. ForG

5100 the leading pole, withã0'0.6, is also well separated from
the other solutions. The lines of closely spaced solutions, wh
extend to higher values ofa1 , are not actual poles but are spuriou
solutions arising from truncation ofcsr(r ).
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An imaginary pole can be found using both methods and

lies at qd5 i1.99, which is again belowz̃52.5. Equations
~4a! and ~4b! of @8# yield a line of spurious solutions a

a0d'2.5, i.e., close to the value ofz̃. Clearly this line is
located where convergence problems are expected and
third pole obtained from the analytical path, which hasa0d

. z̃52.5, cannot be found. Given the strong similarity b
tween the lines of solutions in Fig. 3 and those in Fig. 2,
conclude that the latter, for the OCP treated in the HNC,
a numerical artifact of our truncation.

These results suggest that the lines ofpoles in Fig. 1 of
@11#, for a truncated Lennard-Jones 6-12 fluid treated in
HNC and HMSA, are also spurious. In the HNC this line li
at about 3a0 , wherea0 is the imaginary part of the leadin
poles, and this falls in the region of the complex plane wh
convergence problems are expected. In@20# a similar line of
solutions was found, using identical equations for the po
for the hard-sphere fluid treated in the HNC, and within a
other approximation that also leads to convergence p
lems. We believe these lines also correspond to spurious
lutions. Similar numerical prescriptions for determining t
poles of simple and ionic fluids from integral equation the
ries have been given@17,19,22#. These will also suffer from
convergence problems.

FIG. 3. The poles of the hard-core Yukawa fluid treated in

MSA for ~a! z̃51 and~b! z̃52.5. The filled squares are the actu

poles obtained by solving 12r ĉ(q)50, using the analytical ex-

pression forĉ(q). The diamonds are the numerical solutions to E
~4a! and ~4b! in @8# ~see text!. The lines of diamonds extending t
higher values ofa1 in both ~a! and ~b! are not actual poles bu
correspond to spurious solutions.
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C. Second-order contributions toh„r …

If we subtract the ultimate asymptotic decay~45! from
h(r ), then at sufficiently highG, i.e., G.GK , we obtain the
function

h̄~r ![h~r !22uÃu
e2ã0r

r
cos~a1r 2u!. ~47!

Since the only singularities in the SMSA are simple po
and all contributions from conjugate pairs of complex po
to h(r ) in the expansion~15! have the same form, we expe
h̄(r ) to decay as

h̄~r !→2uĀu
e2ā0r

r
cos~ ā1r 2 ū !, r→`, ~48!

i.e., as the contribution from the next-to-leading-order co
jugate pair of poles,q[6ā11 i ā0 . The amplitudeuĀu and
phaseū are determined in a similar fashion to those for t
leading-order pair of poles~see Sec. II B 2!.

In his early study, Ng@4# noted the appearance of a shou
der in the second peak of the distribution function for t
OCP treated in the HNC, whenG*1500. He remarked tha
the shapes of the peaks at such strong coupling were un
those found for simple fluids. Of course, we should rec
that the OCP freezes into a bcc solid at aboutG'178 @6,7#
and therefore these unusual features develop deep in
metastable fluid region. The shoulder observed by Ng is
unique to the HNC. We found the SMSA solution also e
hibits a split second peak inh(r ). In Fig. 4 we plot the
SMSA solution atG57000. The solid line is the numerica
SMSA solutionh(r ) and the dashed line is what one obtai
by adding the leading-order to the next-to-leading order p
contribution, i.e.,

ha~r ![2uÃu
e2ã0r

r
cos~a1r 2u!12uĀu

e2ā0r

r
cos~ ā1r 2 ū !.

~49!

e

.

FIG. 4. Total correlation functionh(r ) for the OCP treated in
the SMSA atG57000. The solid line is the solution to the integr
equation while the dashed line isha(r ), obtained by adding the
contribution from the leading and the next-to-leading conjugate p
of complex poles as given by Eq.~49!. The parameters are given i
Table II. Note thatg(r )511h(r ) can take on negative values i
this approximation.
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The two conjugate pairs of complex poles and their am
tudes and phases were computed following Sec. II B 2,
their parameters are listed in Table II. The agreement
tweenh(r ) and Eq.~49! suggests that, at least in the SMS
the next-to-leading-order pole contribution does become
portant at intermediate distances in the very strong coup
regime and that the splitting of the second peak is due
marily to such contribution. Higher-order poles do contribu
at G57000 but are less important.

In the HNC, h̄(r ) should decay as Eq.~48! providedā0

,2ã0 . Should this not be the case, then the contribut
associated with the logarithmic branch point singularit
should dominate over the next-to-leading-order pole con
bution. In such circumstances we expecth̄(r ) to decay@see
Eq. ~22!# as

h̄~r !}2uÃu2
e22ã0r

r 2 ln2 r
cos~2a1r 22u!, r→`, ~50!

where we have used the proportional sign to indicate tha
additional prefactor will arise from the functionF(r ) in Eq.
~21!. We have computedh̄(r ) in the SMSA and HNC, at
G5100, by subtracting the leading asymptotic contributi
from the numerical result forh(r ). The results are plotted in
Figs. 5~a! and 5~b! ~solid lines!. We note that the height o
the first maximum ofh̄(r ) ~near 2.5aWS) for the SMSA in
Fig. 5~a! is about 50% of that found for the HNC in Fig
5~b!. The leading-order pair of poles and their respect
amplitudes and phases are listed in Table II.

Figure 5~a! shows there is very good agreement betwe
h̄(r ) and the decay given by Eq.~48!, the next-to-leading-
order pole contribution, with the parameters listed in Ta
II. This is not surprising since for the SMSA atG5100 the
higher poles have much larger imaginary parts.

If we assume that in the strong coupling regime the HN
and SMSA poles should be similar, then forG5100 the
imaginary part of the next-to-leading-order pole should s
isfy ā0.2ã0 and the decay ofh̄(r ) in the HNC should be
determined by the logarithmic branch cut contribution, E
~50!. The fact that we could not find any higher-order po
with imaginary part smaller than 2ã0 when solving Eqs.~25!
and ~26! numerically is consistent with this assumption.
Fig. 5~b! there is reasonable agreement betweenh̄(r ) and the
decay~50!, the dashed line. The period of the oscillations
reproduced fairly well buth̄(r ) decays less rapidly than i
predicted by Eq.~50!. Note that no attempt was made
adjust the amplitude. Although we feel thath̄(r ) probably
does reflect the presence of logarithmic branch singularit
it is very likely that the next-to-leading-order poles, whic
we are not able to calculate in the HNC~see Sec. III B!, also
make a substantial contribution in this range whenG5100.

Accounting for the shoulder in the second peak ofh(r ) at
very highG in the HNC is clearly more complicated than
the SMSA. We expect the next-to-leading-order pair of po
and the leading logarithmic singularities to contribute at
termediate range, i.e., we require Eq.~48! plus Eq.~50!.
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D. Trajectories of poles

In order to understand the genesis ofh(r ) and, indeed,
thermodynamic properties of the OCP, it is necessary to
termine the nature and location of the poles for the full ran
of G. In Fig. 6 we show the trajectories in the complex pla
of seven poles of the OCP calculated in the SMSA. ForG
,GK52.1199, there are two poles lying on the imagina
axis and an infinite number of complex poles. The lead
pole is the pure imaginary pole closest to the real axis
for G!1 this gives rise to Debye-Hu¨ckel-like limiting be-
havior. As G is increased beyondGK , the two imaginary
poles merge and move off symmetrically into the comp
plane while all other conjugate pairs of poles move do
towards the real axis. Note that even atG57000 the higher
poles are still far from the real axis and the leading conjug
pair has ã050.0340. According to the predictions of th
general theory of the AHDL~Sec. II C!, in the limit G→`
all poles should touch the real axis at the points given
solutions of the equationa1

`aWS5tan(a1
`aWS), and we have

drawn the solid lines in Fig. 6 continuing to these points. W
discuss the limiting behavior in the next subsection. It
instructive to compare the present results for the trajecto

FIG. 5. The functionh̄(r ) defined by Eq.~47!, i.e., h(r ) minus
its leading asymptotic decay, for the OCP atG5100.~a! SMSA and
~b! HNC. In both figures the solid line is obtained by subtracting t
asymptotic contribution toh(r ), determined by the leading poles i
Table II, from the solution to the integral equation. In~a! the dashed
line is the contribution from the next-to-leading order pair of pole
Eq. ~48!, with the parameters given in Table II. In~b! the dashed
line is the leading contribution from a logarithmic branch cut~50!,
with the parameters listed in Table II.
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in the OCP with those for the hard-sphere fluid, treated in
Percus-Yevick approximation for whichĉ(q) is known ana-
lytically. Such a comparison is presented in Fig. 7, where
four lowest poles are shown. In the case of hard spheres t
is no pole on the imaginary axis for any value ofh. The two
sets of trajectories are rather different. For hard spheres
real parta1 of each pole increases monotonically with i
creasingh, whereas for the OCP within the SMSA eacha1
decreases with increasingG ~except for the leading-orde
pole! until very high values ofG, when they reach a mini
mum value before finally increasing in the AHDL, i.e.,G
→`.

E. Results in the AHDL

The expected properties of the solutions of integral eq
tions in the AHDL were described in Sec. II C. Here w

FIG. 6. Pole structure of the OCP treated in the SMSA at d
ferent values ofG. The solid lines show the trajectories of the sev
lowest poles asG is varied up toG553107. For G51,2 there is a
pair of poles lying on the imaginary axis. These merge asG is
increased towardsGK52.1199 and then move off symmetricall
into the complex plane. The plot shows only the right-hand co
plex polesa11 ia0 . Note that the AHDL scaling relations~37!–
~40! are obeyed accurately only whenG'107.

FIG. 7. The solid lines are the trajectories of the four low
poles of the OCP treated in the SMSA at differentG. The dashed
lines are the four lowest poles of hard spheres treated in the
approximation at differenth varied up toh50.95. The open circles
denote the poles at a fixed packing fractionh50.015 79 for the
hard spheres and, on the imaginary axis, for the OCP withG51.
The triangles denote the poles ath50.2857 which in the OCP
corresponds toG5100. AsG→` or h→1, the poles meet the rea
axis at the solutions ofa1aWS5tan(a1aWS) represented by dots.
e
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investigate the behavior of the potential energy,c(r 50),
and the poles ofĥ(q) as the AHDL is approached, in bot
the HNC and SMSA. Within the SMSA we have generat
the potential energy,c(r 50), the poles, and their respectiv
amplitudes as functions ofG using our own codes. For th
potential energy in the HNC we use Ng’s data@4# as well as
our own, calculated from

bU

NG
5

3

4p2aWS
2 E

0

`

dq ĥ~q!, ~51!

which was used also by Ng and which proves to be mu
more numerically reliable than the real-space counterp
~30!. For c(r 50) in the HNC we use our own data only
whereas for the leading poles in the HNC we employ N
data only, i.e., we assume that his least-squares fitting to
~41! provides accurate parameters even for very large va
of G, where we encountered difficulties with the direct ca
culation of the poles via Eqs.~25! and ~26! becausecsr(r )
decays too slowly. In our HNC calculation we have used
mesh of 16 384 points withDr 50.0125, whereas Ng use
2048 points for G,600 and 4096 otherwise, withDr
50.025. Within the HNC,« is defined by@14#

«512h[12~R/2aWS!3, ~52!

where the effective diameterR is the lowest value ofr for
which g(r )51, i.e., g(r ),1 for r ,R. R was determined
numerically using a quadratic interpolation:r „g(r )…5a
1bg(r )1cg2(r ), with three points, two forg(r ),1 and
one forg(r ).1. The quadratic intersects the three points a
R[r (1)5a1b1c.

The results we present were obtained using Pade´ approxi-
mants@32# to extrapolate the desired quantities to the AHD
Several sets of data in different ranges ofG were analyzed.
The results we selected for publication are obtained fr
data atG5200, 250, 300, 350, 400, 500, 600, 800, 100
1200, 2000, 3000, 4000, 5000, and 6000, the same value
in Ng’s paper@4#. Given the demanding numerical nature
this work, we believe it is useful to provide the actual da
used in our calculations. These are compiled in Tables
and IV.

It is known that in the SMSA the AHDL analytical ex
pansion for« in powers ofG is given by@33,14#

«~G!5S 108

G D 1/6

2
1

3S 108

G D 1/3

1
5

108S 108

G D 1/2

2
1

243S 108

G D 2/3

1•••. ~53!

This follows by solving Eq.~A9!. In order to test our
extrapolation scheme, we have computed the first and
second coefficients in this expansion by extrapolating fi
«G1/6 and second @«G1/621081/6#G1/6 as 1/G1/6→0,
using Pade´ approximants obtained from our numeric
SMSA data. For the first coefficient we obtain2.182 247 1
61027, whereas 1081/652.182 247 323, and for the
second we obtain 21.587 397 461027, whereas
21081/3/3 521.587 401 126.

-

-

t

Y



ad
p
ad

nd
-
that

te

8
5
7
0
5
5
0
9
4
2
6
0
1
5
7
1

307
392
197
094
137
532
074
275
397
766
098
352
746
558
905
357

PRE 59 1447DECAY OF CORRELATIONS IN FLUIDS: THE ONE- . . .
This exercise clearly shows that the accuracy of our P´
scheme is indeed quite high. The error listed for the extra
lated values is an estimation of the accuracy of the P´
scheme and is returned by the numerical routine used@32#,
rounded off to the nearest power of 10.

TABLE III. Our present results forc(r 50) and the potential
energyU of the OCP treated in both the SMSA and the HNC. No
that in the AHDL,2c(r 50)/G51.2 and2bU/NG50.9.

2c(r 50)/G 2bU/NG

G SMSA HNC SMSA HNC

200 1.218020 1.214319 0.87924043 0.8792
250 1.215787 1.213657 0.88145267 0.8816
300 1.214185 1.213142 0.88308323 0.8833
350 1.212968 1.212714 0.88434898 0.8847
400 1.212004 1.212342 0.88536827 0.8857
500 1.210562 1.211709 0.88692500 0.8873
600 1.209522 1.211174 0.88807266 0.8885
800 1.208097 1.210300 0.88896373 0.8900

1000 1.207149 1.209609 0.89077769 0.8911
1200 1.206461 1.209046 0.89158608 0.8919
1500 1.205714 1.208375 0.89247936 0.8927
2000 1.204883 1.207556 0.89349209 0.8937
3000 1.203921 1.206508 0.89469165 0.8948
4000 1.203361 1.205834 0.89540577 0.8954
5000 1.202983 1.205344 0.89589267 0.8958
6000 1.202708 1.204961 0.89625185 0.8962
ha
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We carried out the calculation using our HNC data a
obtained 1.84761023 for the first coefficient in the expan
sion. There is no reason to expect a value identical to
found in the SMSA. Using the Pade´ approximants scheme
for 1/G→0, we obtain the following results:

TABLE IV. The parameter«[12h(G) and the leading conju-

gate pair of complex poles with its amplitudeuÃu obtained for the
OCP in the SMSA. Note that in the AHDL,a0aWS50, a1aWS

54.493 409 5, and 2uÃu/aWS53.143 971 7. Also given is«[1
2(R/2aWS)

3 for the HNC.

G «~HNC! «~SMSA! a0aWS a1aWS 2uÃu/aWS

200 0.5820 0.6620336112 0.4203516 4.156587 2.853
250 0.5694 0.6453657075 0.3703520 4.176180 2.815
300 0.5588 0.6318424513 0.3330929 4.191907 2.791
350 0.5497 0.6204862492 0.3039496 4.205009 2.775
400 0.5417 0.6107125712 0.2803584 4.216211 2.764
500 0.5284 0.5945239987 0.2441666 4.234609 2.751
600 0.5174 0.5814421722 0.2174176 4.249317 2.746
800 0.5001 0.5610900035 0.1799764 4.271859 2.745

1000 0.4868 0.5455653443 0.1546377 4.288714 2.750
1200 0.4759 0.5330606143 0.1361413 4.302029 2.757
1500 0.4627 0.5179859013 0.1159965 4.317716 2.770
2000 0.4458 0.4989394946 0.0937150 4.336865 2.790
3000 0.4224 0.4728686628 0.0684934 4.361619 2.824
4000 0.4061 0.4549383501 0.0543527 4.377505 2.851
5000 0.3938 0.4413620959 0.0452126 4.388844 2.872
6000 0.3839 0.4304871158 0.0387846 4.397472 2.890
SMSA HNC—our data HNC—Ng’s data

2bU/NG 0.900000061027 0.899361024 0.900961024

2c(r 50)/G 1.2003461025 1.200761024
the
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We note that our treatment of Ng’s potential energy data
produced a somewhat different result from his own, wh
gavebU/NG520.899560.0002@4#. The analytical AHDL
expansion for the potential energy in the SMSA is kno
@33,14#,

b
U

N
52

9

10
G13S G

108D
1/2

1
1

15S G

108D
1/6

1O~G21/6!.

~54!

We used Pade´ approximants to estimate the second coe
cient in this expansion by considering our numerical res
for G21/2(bU/N)10.9G1/2 in the limit 1/G1/3→0 and we
find that the coefficient is

0.288 675 1161028 whereas 3/1081/250.288 675 134 6.

Once again this attests to the reliability of the Pade´ scheme.
If we perform the same calculation using our own HN

data we obtain the value 0.2861022 for this coefficient,
s
h

-
s

while if we use Ng’s data we obtain 0.2561021. There is no
obvious reason to expect the result to be the same as in
SMSA.

Finally, we have investigated the scaling relations for t

leading poles. We extrapolated the values ofã0 with «6

→0 and ofa1 anduÃu with «3→0 @see Eqs.~37!–~40!#. The
results obtained from our SMSA data and from Ng’s HN
data~Table III in @4#! are displayed in Table V. The ampli
tudes in these scaling relations were also computed and
listed in Table VI.Aã0

was computed by extrapolating th

value of the ratioa0aWS/«6 with «6→0. ForAa1
andAÃ we

extrapolated, respectively, (a12a1
`)aWS/«3 and 2(uÃu

2uÃ`u)/«3aWS, with «3→0.
The numerical estimates from the SMSA of the univer

quantitiesa0
` , a1

` , anduÃ`u are in good agreement with th
analytical results. The HNC estimates have larger error b
but these are also consistent with the predictions of the s
ing relations~37!–~40!. Note that the amplitudes~Table VI!
do differ considerably between the two theories. We emp
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size that the Pade´ analysis for the SMSA and HNC was mad
using data for the same values ofG, namely the values given
previously and listed in Tables III and IV. Whereas there
no difficulty in solving the SMSA for arbitrarily largeG, this
is not the case for the HNC and like Ng@4# we did encounter
problems forG*7000. The difference in error estimates r
flects the fact that the SMSA is~essentially! an analytical
theory whereas the HNC requires the numerical solution
nonlinear integral equation.

We did not investigate the AHDL for higher poles a
these could not be calculated within the HNC. However, th
were calculated in the SMSA. One requires very large v
ues,G;107, before the appropriate scaling relations can
assumed to be valid and we did not check the generaliza
of Eqs.~37! and ~38!.

IV. CONCLUDING REMARKS

We have presented a comprehensive analysis of the d
of correlations in the OCP. The main conclusions of o
study are as follows.

~i! The mechanism for the onset of oscillations inh(r ) in
the OCP is the same as that forchargecorrelations in the
RPM or the YRPM. It arises from the coalescence of t
imaginary poles, which exist forG,GK , to produce a con-
jugate pair of complex poles forG.GK . At the crossover
value GK the wavelength of the oscillations is infinite. W
obtain values forGK equal to 2.1199 and 1.120 in the SMS
and the HNC, respectively. It is important to recognize t
this mechanism is very different from that found for the o
set of oscillations in simple fluids where the interatomic p
tential exhibits~short-ranged! attraction as well as repulsion
There@8,9,11# a single imaginary pole dominates at low de
sity whereas a conjugate complex pair dominates at h
density. At the crossover point~termed the Fisher-Widom
@34# value! the imaginary pole and the conjugate pair ha
the same imaginary part,a05ã0Þ0, and the wavelength o
the oscillations is finite. Such crossover results from a co
petition between repulsive and attractive forces.

~ii ! In both the monotonic,G,GK , and oscillatory,G
.GK , regimes, leading-order asymptotics provide a rema
ably accurate description ofh(r ) at intermediate as well a
long range. This is due to the fact that, as in other flu
@8,11,10,24#, the leading pole~s! are well-separated from th
remaining poles or singularities.

~iii ! In the SMSA, where we are able to calculate all t

TABLE V. The analytical predictions and our numerical es
mates from the SMSA and HNC for the leading conjugate pair

complex poles and its respective amplitudeuÃ`u in the AHDL. The
SMSA estimates were obtained by applying Pade´ approximants to
the data in Table IV whereas the HNC estimates were obta
using data in Table III of@4# for the poles and amplitudes, and«(G)
from our Table IV.

Analytical SMSA HNC

ã0
`aWS

0 20.0002861025 20.01161023

a1
`aWS 4.493409458 4.493961024 4.5061022

2uÃ`u/aWS
3.14397174 3.145561024 3.1761022
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poles, we showed that the contribution from the next-
leading conjugate pair of poles leads to a splitting of t
second maximum inh(r ) when G*2000. Determining the
higher-order poles in the HNC by direct calculation is n
possible if these have an imaginary part greater than 2ã0 .
Attempts at fitting the next-to-leading-order decay ofh(r ) to
particular asymptotic forms in order to determine the high
order poles are also problematic since, within the HNC, c
tributions from logarithmic branch points are expected
intervene. What theactual next-to-leading-order decay o
h(r ) is for the OCP remains to be ascertained. An excell
fit to simulation data forh(r ) beyond the first maximum wa
obtained by assuming it was the sum of three terms with
form ~45! @35# but this does not prove that there are on
pole contributions.

~iv! Our investigation of the AHDL of the OCP has am
plified that of Ref.@14#. Within the SMSA there is, of course
no difficulty in obtaining the solutions, poles, etc. with arb
trary precision and all the predictions associated with
AHDL have been confirmed. The present work demonstra
that the asymptotic regime is not entered untilG is very high
indeed—see Fig. 6. Even forG as high as 7000, the trajec
tories of the higher poles have not attained behavior wh
resembles remotely that of the AHDL. The situation is mu
better for the leading pole, which is why we were able
conduct the Pade´ analysis based on data forG<6000. Al-
though the numerical solutions of the HNC are less accu
than the input from the SMSA, our analysis does suggest
the predictions of the AHDL are also obeyed by t
HNC—at least for the quantitiesc(r 50)/G, bU/N, and the
parameters of the leading pole which we were able to ca
late. We provide new estimates for the various coefficie
entering the expansions of the quantities.

~v! While our results support the ideas of universality
structure conjectured for the AHDL, and therefore supp
the description of the limith51 as defining anideal liquid,
it is clear from Figs. 6 and 7 that one soon leaves the AHD
This is confirmed by plotting the results on an expand
scale for largeh. Whether one can use predictions based
the AHDL to describe the properties of stable~with respect
to the solid! dense liquids remains a matter for further inve
tigation and debate.

As a final remark we mention that our analysis also h
implications for the decay of~one-body! density profiles at
wall-fluid interfaces. It is straightforward to show@8,9,36#
that the profile at a single wall and the solvation force fo
confined fluid decay into bulk in the same fashion ash(r ),
i.e., with the same exponential decay lengtha0

21 and, when

f

d

TABLE VI. The amplitudes in the scaling relations~37!–~40!
for the poles of the OCP in the AHDL. The results for the SMS
were obtained by applying Pade´ approximants on our own gener
ated data. The results for the HNC were computed using the pa
eters in Table III of@4# for the leading poles and our own data
Table IV for «(G).

SMSA HNC

Aã0
4.4861022 1561

Aa1
0.6461022 1.78761023

AÃ 21.861021 21.6761022
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appropriate, the same oscillatory wavelengtha1
21 . Only the

amplitudes and phases depend on the particular form of
wall-fluid potentials—note the latter must be short-rang
These results are a consequence of the fact that for fl
with short-ranged interatomic potentials the asymptotic
cay of the profile and the solvation force is governed by
leading poles of the bulk functionĥ(q). We expect the same
results to be valid for the OCP subject to external potenti
e.g., a hard-wall or a half-space of compensating cha
background. Thus, forG,GK we predict monotonic deca
and for G.GK oscillatory decay of the density profile int
bulk. The wavelength should decrease and the decay le
of the oscillations should increase asG is increased. Al-
though there have been several theoretical and simula
studies of the OCP near walls@37#, these have not addresse
the predictions we give here.
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APPENDIX A: THE OCP TREATED IN THE SMSA

We consider a system of charged hard spheres of diam
d immersed in a uniform oppositely charged backgrou
which preserves the overall electrical neutrality. The inte
onic potential is

bf~r !5`, r ,d

5b
e2

r
, r .d. ~A1!

The MSA for this system consists of the Ornstein-Zern
relation ~3!, the exact condition due to the hard-coreh(r )
521 for r ,d, and the closure approximationcsr(r )
[c(r )1bf(r )50 for r .d. The solution to the MSA for
this problem was given by Palmer and Weeks@38# and reads

c~x!5A16hM2x1
1

6
k2x2

1
1

2
h~A1k2V!x31

hk2

60
x5, x,1, ~A2!

wherex[r /d and the dimensionless coefficients are det
mined by the following equations:

A52
~112h!2

~12h!4
1

Q2

4~12h!2
2

~11h!Qk

12h
2

~51h2!k2

60h
,

~A3!

V52
~11h2h2/5!

12h
2

~12h!Q

12hk
, ~A4!
he
.

ds
-
e

s,
e

th

on

y
t
g

t

ter
d
-

-

Q5
112h

12h F12S 11
2~12h!3k

~112h!2 D 1/2G , ~A5!

M5
Q2

24h
2

11h/2

~12h!2
, ~A6!

h is the packing fraction andk25kD
2 d254pbre2d2

512Gh2/3. Note that the parameterV is proportional to the
potential energyU,

bU

N
5

1

2
k2V. ~A7!

The continuity ofh(x)2c(x) at x51 requires

g~x511!52M52csr~x512!. ~A8!

In the SMSA for a soft potential one imposes an ad
tional condition to the MSA closure, i.e., the continuity
the pair distribution function at the hard-sphere diame
Thus the effective diameterR is chosen so as to ensure th
g(r ) is always continuous andg(x511)50. From Eq.~A8!
this impliesM[0. In practice, for the OCP at a givenG the
packing fractionh[h(G)5rpR3/6 is chosen so that the
conditionM50 is satisfied. It follows thath(G) satisfies

052~6h13h2!1/21112h

2@~112h!214~12h!3h1/3A3G#1/2 ~A9!

which can be solved numerically forh(G) using a Newton-
Raphson procedure.

APPENDIX B: AMPLITUDE AND PHASE FOR SIMPLE
POLE CONTRIBUTIONS IN THE OCP

In this appendix we describe the evaluation of the am
tude and phase of contributions toh(r ) arising from simple
poles. It is assumed thatcsr(r ) has been obtained numer
cally from the HNC or another closure approximation.

If a pure imaginary pole,q5 ia0 , is found by solving Eq.
~28!, then its amplitude in the expansion~15! of h(r ) is
given by

A52
1

2pr2

ia0

dĉ~ ia0!/dia0

, ~B1!

where the derivative ofĉ(q) can be obtained from Eq.~24!
and is given by

dĉ~ ia0!

da0
5

4p

a0
E

0

`

dr rcsr~r !F r cosh~a0r !2
sinh~a0r !

a0
G

2
2

a0rS kD

a0
D 2

. ~B2!

Consider now a conjugate pair of complex polesq5

6a11 i ã0 . Using Eq.~10! in Eq. ~15! leads to the following
expression for the amplitude of the contribution of a sing
complex pole:



ate
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1

2prF q

rdĉsr~q!/dq12kD
2 /q3G . ~B3!

It is useful to introduce the functionsa andb defined by

ĉsr~q![
4p

q
~a2 ib ! ~B4!

and the functionsc andd defined by

dĉsr~q!/dq

q
[2

1

q2
@ ĉsr~q!24p~c2 id !#. ~B5!

Then, for the positive poleq[1a11 i ã0 , it follows that

a5E
0

`

dr rcsr~r !sinh~ ã0r !cos~a1r !,

~B6!

b5E
0

`

dr rcsr~r !cosh~ ã0r !sin~a1r !

and

c5E
0

`

dr r 2csr~r !cosh~ ã0r !cos~a1r !,

~B7!

d5E
0

`

dr r 2csr~r !sinh~ ã0r !sin~a1r !.

The ~complex! amplitude of this pole,A1[uÃue2 iu @see the
discussion after Eq.~17!#, can be written as

uÃu21eiu52
2pr

q F rdĉsr~q!

dq
12

kD
2

q3 G
5

8p2r2

q2 F a2 ib

ã02 ia1

2~c2 id !2~ f 2 ig !G
5

8p2r2

q2
~ ã1 i b̃ !, ~B8!
em

A

d

where

f 2 ig[kD
2 /~2prq2! ~B9!

and

ã5
aã01ba1

ã0
21a1

2
2c2 f , b̃5

aa12bã0

ã0
21a1

2
1d1g.

~B10!

Rearranging Eq.~B8!, we obtain

uÃue2 iu5
~ ã0

21a1
2!

8p2r2Aã21b̃2
e2 i ~ t22p! ~B11!

with the anglesp and t determined by

eip5
a11 i ã0

Aã0
21a1

2
eit5

ã1 i b̃

Aã21b̃2
. ~B12!

Using Eq.~B9!, it follows that

f 5
kD

2

2pr

a1
22ã0

2

~ ã0
21a1

2!2
, g5

kD
2

2pr

2a1ã0

~ ã0
21a1

2!2
. ~B13!

In order to compute the amplitude and phase of a conjug
pair of complex polesq56a11 i ã0 we employcsr(r ) in
Eqs.~B6! and ~B7! to find a, b, c, andd. Then ã and b̃ are
evaluated from Eq.~B10! with Eq. ~B13!. Finally we use
these results in Eq.~B11! to find uÃu and the phaseu5t
22p, with the anglest and p calculated from Eq.~B12!.
Note that the range of convergence of the integrals in E
~B6! and ~B7! is the same as in Eqs.~25! and ~26! and this
prescription for determining the amplitudes and phases
only valid provided the poles themselves can be determi
from the latter pair of equations.
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